Mostrar el registro sencillo del ítem

dc.contributor.authorCariñena Marzo, José Fernando
dc.contributor.authorHerranz, F.J.
dc.contributor.authorFernández-Rañada Menéndez De Luarca, Manuel
dc.date.accessioned2018-12-27T16:42:12Z
dc.date.available2018-12-27T16:42:12Z
dc.date.issued2017
dc.identifier.citationJournal of Mathematical Physics 58, 022701 (2017)es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/33639
dc.descriptionProducción Científicaes
dc.description.abstractThe Eisenhart geometric formalism, which transforms an Euclidean natural Hamiltonian H = T +V into a geodesic Hamiltonian T with one additional degree of freedom, is applied to the four families of quadratically superintegrable systems with multiple separability in the Euclidean plane. Firstly, the separability and superintegrability of such four geodesic Hamiltonians T_r (r = a, b, c, d) in a three-dimensional curved space are studied and then these four systems are modified with the addition of a potential Ur leading to H_r = T_r +U_r. Secondly, we study the superintegrability of the four Hamiltonians tilde{H}_r = H_r/μ_r, where μ_r is a certain position-dependent mass, that enjoys the same separability as the original system H_r. All the Hamiltonians here studied describe superintegrable systems on non-Euclidean three-dimensional manifolds with a broken spherically symmetry.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleSuperintegrable systems on 3-dimensional curved spaces: Eisenhart formalism and separabilityes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.publicationfirstpage022701es
dc.peerreviewedSIes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem