Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/38655
Título
Generating actionable predictions regarding MOOC learners’ engagement in peer reviews
Autor
Año del Documento
2019
Editorial
Taylor & Francis Group
Descripción
Producción Científica
Documento Fuente
Behaviour & Information Technology, in press, 2019
Résumé
Peer review is one approach to facilitate formative feedback exchange in MOOCs; however, it is often undermined by low participation. To support effective implementation of peer reviews in MOOCs, this research work proposes several predictive models to accurately classify learners according to their expected engagement levels in an upcoming peer-review activity, which offers various pedagogical utilities (e.g. improving peer reviews and collaborative learning activities). Two approaches were used for training the models: in situ learning (in which an engagement indicator available at the time of the predictions is used as a proxy label to train a model within the same course) and transfer across courses (in which a model is trained using labels obtained from past course data). These techniques allowed producing predictions that are actionable by the instructor while the course still continues, which is not possible with post-hoc approaches requiring the use of true labels. According to the results, both transfer across courses and in situ learning approaches have produced predictions that were actionable yet as accurate as those obtained with cross validation, suggesting that they deserve further attention to create impact in MOOCs with real-world interventions. Potential pedagogical uses of the predictions were illustrated with several examples.
Palabras Clave
Engagement prediction
Predicción del compromiso
MOOC (Massive Open Online Course)
CEMA (Curso En Línea Masivo y Abierto)
Peer review
Revisión por pares
In situ learning
Aprendizaje in situ
ISSN
1362-3001
Revisión por pares
SI
Patrocinador
European Union’s Horizon 2020 research and innovation programme (Marie Sklodowska-Curie grant 793317)
Ministerio de Ciencia, Innovación y Universidades (projects TIN2017-85179-C3-2-R / TIN2014-53199-C3-2-R)
Junta de Castilla y León (grant VA257P18)
Comisión Europea (grant 588438-EPP-1-2017-1-EL-EPPKA2-KA)
Ministerio de Ciencia, Innovación y Universidades (projects TIN2017-85179-C3-2-R / TIN2014-53199-C3-2-R)
Junta de Castilla y León (grant VA257P18)
Comisión Europea (grant 588438-EPP-1-2017-1-EL-EPPKA2-KA)
Patrocinador
info:eu-repo/grantAgreement/EC/H2020/793317
Version del Editor
Propietario de los Derechos
© 2019 Informa UK Limited
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional