• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Sistemas Inteligentes y Cooperativos/Educación, Medios, Informática y Cultura (GSIC/EMIC)
    • GSIC - Capítulos de monografías
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Sistemas Inteligentes y Cooperativos/Educación, Medios, Informática y Cultura (GSIC/EMIC)
    • GSIC - Capítulos de monografías
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/43239

    Título
    Quantifying collaboration quality in face-to-face classroom settings using MMLA
    Autor
    Chejara, Pankaj
    Prieto Santos, Luis Pablo
    Ruiz Calleja, AdolfoAutoridad UVA
    Rodríguez Triana, María JesúsAutoridad UVA Orcid
    Kant Shankar, Shashi
    Kasepalu, Reet
    Año del Documento
    2020
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    Chejara P., Prieto L.P., Ruiz-Calleja A., Rodríguez-Triana M.J., Shankar S.K., Kasepalu R. Quantifying Collaboration Quality in Face-to-Face Classroom Settings Using MMLA. In: Nolte A., Alvarez C., Hishiyama R., Chounta IA., Rodríguez-Triana M., Inoue T. (eds) Collaboration Technologies and Social Computing. CollabTech 2020. Lecture Notes in Computer Science, vol 12324. Springer, 2020. https://doi.org/10.1007/978-3-030-58157-2_11
    Resumen
    The estimation of collaboration quality using manual observation and coding is a tedious and difficult task. Researchers have proposed the automation of this process by estimation into few categories (e.g., high vs. low collaboration). However, such categorical estimation lacks in depth and actionability, which can be critical for practitioners. We present a case study that evaluates the feasibility of quantifying collaboration quality and its multiple sub-dimensions (e.g., collaboration flow) in an authentic classroom setting. We collected multimodal data (audio and logs) from two groups collaborating face-to-face and in a collaborative writing task. The paper describes our exploration of different machine learning models and compares their performance with that of human coders, in the task of estimating collaboration quality along a continuum. Our results show that it is feasible to quantitatively estimate collaboration quality and its sub-dimensions, even from simple features of audio and log data, using machine learning. These findings open possibilities for in-depth automated quantification of collaboration quality, and the use of more advanced features and algorithms to get their performance closer to that of human coders.
    Materias Unesco
    58 Pedagogía
    Palabras Clave
    Análisis de aprendizaje
    Learning Analytics
    Patrocinador
    European Union via the European Regional Development Fund and in the context of CEITER and Next-Lab (Horizon 2020 Research and Innovation Programme, grant agreements no. 669074 and 731685)
    Junta de Castilla y León (Project VA257P18)
    Ministerio de Ciencia, Innovación y Universidades (Project TIN2017-85179-C3-2-R)
    Patrocinador
    info:eu-repo/grantAgreement/EC/H2020/669074
    info:eu-repo/grantAgreement/EC/H2020/731685
    Version del Editor
    https://link.springer.com/chapter/10.1007%2F978-3-030-58157-2_11
    Propietario de los Derechos
    © 2020 Springer
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/43239
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GSIC - Capítulos de monografías [7]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    2020_Chejara_CollabTech.pdf
    Tamaño:
    222.2Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10