Mostrar el registro sencillo del ítem

dc.contributor.authorChejara, Pankaj
dc.contributor.authorPrieto, Luis P.
dc.contributor.authorRuiz Calleja, Adolfo 
dc.contributor.authorRodríguez Triana, María Jesús
dc.contributor.authorKant Shankar, Shashi
dc.contributor.authorKasepalu, Reet
dc.date.accessioned2020-10-28T12:16:04Z
dc.date.available2020-10-28T12:16:04Z
dc.date.issued2020
dc.identifier.citationChejara P., Prieto L.P., Ruiz-Calleja A., Rodríguez-Triana M.J., Shankar S.K., Kasepalu R. Quantifying Collaboration Quality in Face-to-Face Classroom Settings Using MMLA. In: Nolte A., Alvarez C., Hishiyama R., Chounta IA., Rodríguez-Triana M., Inoue T. (eds) Collaboration Technologies and Social Computing. CollabTech 2020. Lecture Notes in Computer Science, vol 12324. Springer, 2020. https://doi.org/10.1007/978-3-030-58157-2_11es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/43239
dc.descriptionProducción Científicaes
dc.description.abstractThe estimation of collaboration quality using manual observation and coding is a tedious and difficult task. Researchers have proposed the automation of this process by estimation into few categories (e.g., high vs. low collaboration). However, such categorical estimation lacks in depth and actionability, which can be critical for practitioners. We present a case study that evaluates the feasibility of quantifying collaboration quality and its multiple sub-dimensions (e.g., collaboration flow) in an authentic classroom setting. We collected multimodal data (audio and logs) from two groups collaborating face-to-face and in a collaborative writing task. The paper describes our exploration of different machine learning models and compares their performance with that of human coders, in the task of estimating collaboration quality along a continuum. Our results show that it is feasible to quantitatively estimate collaboration quality and its sub-dimensions, even from simple features of audio and log data, using machine learning. These findings open possibilities for in-depth automated quantification of collaboration quality, and the use of more advanced features and algorithms to get their performance closer to that of human coders.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationAnálisis de aprendizajees
dc.subject.classificationLearning Analyticses
dc.titleQuantifying Collaboration Quality in Face-to-Face Classroom Settings Using MMLAes
dc.typeinfo:eu-repo/semantics/bookPartes
dc.rights.holder© 2020 Springeres
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007%2F978-3-030-58157-2_11es
dc.description.projectEuropean Union via the European Regional Development Fund and in the context of CEITER and Next-Lab (Horizon 2020 Research and Innovation Programme, grant agreements no. 669074 and 731685)es
dc.description.projectJunta de Castilla y León (Project VA257P18)es
dc.description.projectMinisterio de Ciencia, Innovación y Universidades (Project TIN2017-85179-C3-2-R)es
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/669074
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/731685
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones
dc.subject.unesco58 Pedagogíaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem