Mostrar el registro sencillo del ítem

dc.contributor.authorKant Shankar, Shashi
dc.contributor.authorRodríguez Triana, María Jesús
dc.contributor.authorRuiz Calleja, Adolfo 
dc.contributor.authorPrieto, Luis P.
dc.contributor.authorChejara, Pankaj
dc.contributor.authorMartínez Monés, Alejandra 
dc.date.accessioned2020-10-29T07:17:54Z
dc.date.available2020-10-29T07:17:54Z
dc.date.issued2020
dc.identifier.citationIEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 2020, vol. 15, no. 2, pp. 113-122es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/43245
dc.descriptionProducción Científicaes
dc.description.abstractMultimodal Learning Analytics (MMLA) systems, understood as those that exploit multimodal evidence of learning to better model a learning situation, have not yet spread widely in educational practice. Their inherent technical complexity, and the lack of educational stakeholder involvement in their design, are among the hypothesized reasons for the slow uptake of this emergent field. To aid in the process of stakeholder communication and systematization leading to the specification of MMLA systems, this paper proposes a Multimodal Data Value Chain (M-DVC). This conceptual tool, derived from both the field of Big Data and the needs of MMLA scenarios, has been evaluated in terms of its usefulness for stakeholders, in three authentic case studies of MMLA systems currently under development. The results of our mixed-methods evaluation highlight the usefulness of the M-DVC to elicit unspoken assumptions or unclear data processing steps in the initial stages of development. The evaluation also revealed limitations of the M-DVC in terms of the technical terminology employed, and the need for more detailed contextual information to be included. These limitations also prompt potential improvements for the M-DVC, on the path towards clearer specification and communication within the multi-disciplinary teams needed to build educationally-meaningful MMLA solutions.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherInstitute of Electrical and Electronics Engineerses
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationAprendizaje multimodales
dc.subject.classificationMultimodal Learninges
dc.titleMultimodal Data Value Chain (M-DVC): A Conceptual Tool to Support the Development of Multimodal Learning Analytics Solutionses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2020 IEEEes
dc.identifier.doi10.1109/RITA.2020.2987887es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9066924es
dc.identifier.publicationfirstpage113es
dc.identifier.publicationissue2es
dc.identifier.publicationlastpage122es
dc.identifier.publicationtitleIEEE Revista Iberoamericana de Tecnologias del Aprendizajees
dc.identifier.publicationvolume15es
dc.peerreviewedSIes
dc.description.projectJunta de Castilla y León (Project VA257P18)es
dc.description.projectMinisterio de Ciencia, Innovación y Universidades (Project TIN2017-85179-C3-2-R)es
dc.description.projectCEITER (grant agreements no. 669074)es
dc.identifier.essn1932-8540es
dc.identifier.essn2374-0132es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones
dc.subject.unesco58 Pedagogíaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem