• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Sistemas Inteligentes y Cooperativos/Educación, Medios, Informática y Cultura (GSIC/EMIC)
    • GSIC - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Sistemas Inteligentes y Cooperativos/Educación, Medios, Informática y Cultura (GSIC/EMIC)
    • GSIC - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/43245

    Título
    Multimodal data value chain (M-DVC): a conceptual tool to support the development of multimodal learning analytics solutions
    Autor
    Kant Shankar, Shashi
    Rodríguez Triana, María JesúsAutoridad UVA Orcid
    Ruiz Calleja, AdolfoAutoridad UVA
    Prieto Santos, Luis Pablo
    Chejara, Pankaj
    Martínez Monés, AlejandraAutoridad UVA
    Año del Documento
    2020
    Editorial
    Institute of Electrical and Electronics Engineers
    Descripción
    Producción Científica
    Documento Fuente
    IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 2020, vol. 15, no. 2, pp. 113-122
    Resumen
    Multimodal Learning Analytics (MMLA) systems, understood as those that exploit multimodal evidence of learning to better model a learning situation, have not yet spread widely in educational practice. Their inherent technical complexity, and the lack of educational stakeholder involvement in their design, are among the hypothesized reasons for the slow uptake of this emergent field. To aid in the process of stakeholder communication and systematization leading to the specification of MMLA systems, this paper proposes a Multimodal Data Value Chain (M-DVC). This conceptual tool, derived from both the field of Big Data and the needs of MMLA scenarios, has been evaluated in terms of its usefulness for stakeholders, in three authentic case studies of MMLA systems currently under development. The results of our mixed-methods evaluation highlight the usefulness of the M-DVC to elicit unspoken assumptions or unclear data processing steps in the initial stages of development. The evaluation also revealed limitations of the M-DVC in terms of the technical terminology employed, and the need for more detailed contextual information to be included. These limitations also prompt potential improvements for the M-DVC, on the path towards clearer specification and communication within the multi-disciplinary teams needed to build educationally-meaningful MMLA solutions.
    Materias Unesco
    58 Pedagogía
    Palabras Clave
    Aprendizaje multimodal
    Multimodal Learning
    Revisión por pares
    SI
    DOI
    10.1109/RITA.2020.2987887
    Patrocinador
    Junta de Castilla y León (Project VA257P18)
    Ministerio de Ciencia, Innovación y Universidades (Project TIN2017-85179-C3-2-R)
    CEITER (grant agreements no. 669074)
    Version del Editor
    https://ieeexplore.ieee.org/document/9066924
    Propietario de los Derechos
    © 2020 IEEE
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/43245
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GSIC - Artículos de revista [14]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Multimodal-2019_KantShankar_IEEERita.pdf
    Tamaño:
    437.3Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10