• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Electricidad y Electrónica
    • DEP22 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Electricidad y Electrónica
    • DEP22 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/45124

    Título
    Achieving junction stability in heavily doped epitaxial Si:P
    Autor
    Tsai, Chun-Hsiung
    Hsu, Yu-Hsiang
    Santos Tejido, IvánAutoridad UVA Orcid
    Pelaz Montes, María LourdesAutoridad UVA Orcid
    Kowalski, Jeffrey
    Liou, J.W.
    Woon, Wei-Yen
    Lee, Chih-Kung
    Año del Documento
    2021
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Materials Science in Semiconductor Processing Volume 127, 2021, 105672
    Abstract
    Junction stability and donor deactivation in silicon at high doping limit has been a long-standing issue in advanced semiconductor devices. Recently, heavily doped epitaxial Si:P layer with phosphorus concentrations as high as 3 × 1021 at./cm3 has been employed in nanowire field-effect transistor (FET) devices for sub-3 nm technology node as low resistance source-drain and channel stressor. In such highly doped Si:P, the actual dopant activation is much less than nominal phosphorus concentration due to inactive phosphorus atoms arising from dopant-vacancy defects (PnV) clustering phenomenon. Even with state-of-the-art high temperature millisecond annealing, this epitaxial film is thermally unstable upon subsequent thermal treatments. To overcome this limitation, we demonstrate a selective dopant activation scheme which results from the dipole moments of inactive PnV structures within the crystal lattice and their direct energy coupling with the external electric field. It's found that superior stability in dopant activation can be achieved through microwave annealing when a specific temperature and field conditions are met using a triple-parallel-susceptor setup in the microwave cavity. Based on experimental results and ab-initio calculation, we proposed a model, whereas the microwave-PnV interactions result in a specific distribution of dopant defect dominated by thermally stable P4V clusters through elimination of unstable low order PnV, leading to the suppression of donor deactivation and achieving thermally stable junction.
    Palabras Clave
    Microondas
    Microondas
    Doping
    Dopaje
    ISSN
    1369-8001
    Revisión por pares
    SI
    DOI
    10.1016/j.mssp.2021.105672
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades (Project MOST-109-2628-M-008-004-MY3)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1369800121000159?via%3Dihub
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/45124
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Collections
    • Electrónica - Artículos de revista [33]
    • DEP22 - Artículos de revista [65]
    Show full item record
    Files in this item
    Nombre:
    2021_Tsai-Santos_MSSP_127.pdf
    Tamaño:
    1.274Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10