• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Grupos de Investigación
    • Grupo de Materiales Avanzados y Nanobiotecnología (BIOFORGE)
    • BIOFORGE - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Grupos de Investigación
    • Grupo de Materiales Avanzados y Nanobiotecnología (BIOFORGE)
    • BIOFORGE - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/47855

    Título
    Antibiofilm coatings based on protein-engineered polymers and antimicrobial peptides for preventing implant-associated infections
    Autor
    Acosta Rodríguez, SergioAutoridad UVA Orcid
    Ibáñez Fonseca, Arturo
    Aparicio, Conrado
    Rodríguez Cabello, José CarlosAutoridad UVA Orcid
    Año del Documento
    2020
    Editorial
    The Royal Society of Chemistry
    Descripción
    Producción Científica
    Documento Fuente
    Biomater. Sci., 2020, 8, 2866–2877
    Résumé
    Implant-associated infections (IAIs) are one of the leading concerns in orthopedics and dentistry as they commonly lead to implant failure. The presence of biofilms and, increasingly frequently, drug-resistant bacteria further impairs the efficacy of conventional antibiotics. Immobilization of antimicrobial peptides (AMPs) on implant surfaces is a promising alternative to antibiotics for prevention of IAIs. In addition, the use of functional linkers for the AMP tethering enables to increase the antimicrobial potential and the bioactivities of the coating. In this study, an extracellular-matrix-mimicking system based on elastin-like recombinamers (ELRs) has been developed for the covalent anchoring of AMPs and investigated for use as a hybrid antibiofilm coating. A drip-flow biofilm reactor was used to simulate in vivo environmental dynamic conditions, thus showing that the presence of the AMPs in the hybrid coatings provided strong antibiofilm activity against monospecies and microcosm biofilm models of clinical relevance. These results, together with an excellent cytocompatibility towards primary gingival fibroblasts, encourage the use of ELRs as multivalent platforms for AMPs and open up a wide range of possibilities in the biofabrication of advanced coatings combining the antibiofilm potential of AMPs and the outstanding tunability and biomechanical properties of the ELRs.
    Revisión por pares
    SI
    DOI
    10.1039/d0bm00155d
    Patrocinador
    The authors are grateful for funding from the European Commission (NMP-2014-646075), the Spanish Government (MAT2016-78903-R and PCIN-2015-010 (FunBioPlas)), the Junta de Castilla y León (VA317P18) and the Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León.
    Version del Editor
    https://rsc.li/biomaterials-science
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/47855
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • BIOFORGE - Artículos de revista [89]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Accepted version.pdf
    Tamaño:
    3.714Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10