Mostrar el registro sencillo del ítem

dc.contributor.authorDuque Domingo, Jaime
dc.contributor.authorGómez García-Bermejo, Jaime 
dc.contributor.authorZalama Casanova, Eduardo 
dc.date.accessioned2021-09-02T08:08:57Z
dc.date.available2021-09-02T08:08:57Z
dc.date.issued2021
dc.identifier.citationMultimedia Tools and Applications, 2021. 18 p.es
dc.identifier.issn1380-7501es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/48472
dc.descriptionProducción Científicaes
dc.description.abstractGaze control represents an important issue in the interaction between a robot and humans. Specifically, deciding who to pay attention to in a multi-party conversation is one way to improve the naturalness of a robot in human-robot interaction. This control can be carried out by means of two different models that receive the stimuli produced by the participants in an interaction, either an on-center off-surround competitive network or a recurrent neural network. A system based on a competitive neural network is able to decide who to look at with a smooth transition in the focus of attention when significant changes in stimuli occur. An important aspect in this process is the configuration of the different parameters of such neural network. The weights of the different stimuli have to be computed to achieve human-like behavior. This article explains how these weights can be obtained by solving an optimization problem. In addition, a new model using a recurrent neural network with LSTM layers is presented. This model uses the same set of stimuli but does not require its weighting. This new model is easier to train, avoiding manual configurations, and offers promising results in robot gaze control. The experiments carried out and some results are also presented.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringer Linkes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationHumanoid robotses
dc.subject.classificationRobots humanoideses
dc.subject.classificationComputer visiones
dc.subject.classificationVisión artificiales
dc.subject.classificationRecurrent neural networkses
dc.subject.classificationRedes neuronales recurrenteses
dc.titleOptimization and improvement of a robotics gaze control system using LSTM networkses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 Springeres
dc.identifier.doi10.1007/s11042-021-11112-7es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007%2Fs11042-021-11112-7es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades (project TI2018-096652-B-I00)es
dc.description.projectJunta de Castilla y León - Fondo Europeo de Desarrollo Regional (grant VA233P18)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem