• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Institutos de Investigación
    • Instituto de las Tecnologías Avanzadas en la Producción (ITAP)
    • ITAP - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Institutos de Investigación
    • Instituto de las Tecnologías Avanzadas en la Producción (ITAP)
    • ITAP - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/48472

    Título
    Optimization and improvement of a robotics gaze control system using LSTM networks
    Autor
    Duque Domingo, JaimeAutoridad UVA Orcid
    Gómez García-Bermejo, JaimeAutoridad UVA Orcid
    Zalama Casanova, EduardoAutoridad UVA Orcid
    Año del Documento
    2021
    Editorial
    Springer Link
    Descripción
    Producción Científica
    Documento Fuente
    Multimedia Tools and Applications, 2021. 18 p.
    Zusammenfassung
    Gaze control represents an important issue in the interaction between a robot and humans. Specifically, deciding who to pay attention to in a multi-party conversation is one way to improve the naturalness of a robot in human-robot interaction. This control can be carried out by means of two different models that receive the stimuli produced by the participants in an interaction, either an on-center off-surround competitive network or a recurrent neural network. A system based on a competitive neural network is able to decide who to look at with a smooth transition in the focus of attention when significant changes in stimuli occur. An important aspect in this process is the configuration of the different parameters of such neural network. The weights of the different stimuli have to be computed to achieve human-like behavior. This article explains how these weights can be obtained by solving an optimization problem. In addition, a new model using a recurrent neural network with LSTM layers is presented. This model uses the same set of stimuli but does not require its weighting. This new model is easier to train, avoiding manual configurations, and offers promising results in robot gaze control. The experiments carried out and some results are also presented.
    Palabras Clave
    Humanoid robots
    Robots humanoides
    Computer vision
    Visión artificial
    Recurrent neural networks
    Redes neuronales recurrentes
    ISSN
    1380-7501
    Revisión por pares
    SI
    DOI
    10.1007/s11042-021-11112-7
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades (project TI2018-096652-B-I00)
    Junta de Castilla y León - Fondo Europeo de Desarrollo Regional (grant VA233P18)
    Version del Editor
    https://link.springer.com/article/10.1007%2Fs11042-021-11112-7
    Propietario de los Derechos
    © 2021 Springer
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/48472
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • ITAP - Artículos de revista [53]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    Optimization-improvement-robotics.pdf
    Tamaño:
    1.618Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10