• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Institutos de Investigación
    • Instituto de las Tecnologías Avanzadas en la Producción (ITAP)
    • ITAP - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Institutos de Investigación
    • Instituto de las Tecnologías Avanzadas en la Producción (ITAP)
    • ITAP - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/48617

    Título
    Visual recognition of gymnastic exercise sequences. Application to supervision and robot learning by demonstration
    Autor
    Duque Domingo, JaimeAutoridad UVA Orcid
    Gómez García-Bermejo, JaimeAutoridad UVA Orcid
    Zalama Casanova, EduardoAutoridad UVA Orcid
    Año del Documento
    2021
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Robotics and Autonomous Systems, 2021, vol. 143, 103830
    Résumé
    This work presents a novel software architecture to autonomously identify and evaluate the gymnastic activity that people are carrying out. It is composed of three different interconnected layers. The first corresponds to a Multilayer Perceptron (MLP) trained from a set of angular magnitudes derived from the information provided by the OpenPose library. This library works frame by frame, so some postures may be incorrectly detected due to eventual occlusions. The MLP layer makes it possible to accurately identify the posture a person is performing. A second layer, based on a Hidden Markov Model (HMM) and the Viterbi algorithm, filters the incorrect spurious postures. Thus, the accuracy of the algorithm is improved, leading to a precise sequence of postures. A third layer identifies the current exercise and evaluates whether the person is doing it at a correct speed. This layer uses an innovative Modified Levenshtein Distance (MLD), which considers not only the number of operations to transform a given sequence, but also the nature of the elements participating in the comparison. The system works in real time with little delay, thus recognizing sequences of arbitrary length and providing continuous feedback on the exercises being performed. An experiment carried out consisted in reproducing the output of the second layer on an autonomous Pepper robot that can be used in environments where physical exercise is performed, such as a residence for the elderly or others. It has reproduced different exercises previously executed by an instructor so that people can copy the robot. The article analyzes the current situation of the automated gymnastic activities recognition, presents the architecture, the different experiments carried out and the results obtained. The integration of the three components (MLP, HMM and MLD) results in a robust system that has allowed us to improve the results of previous works.
    Materias Unesco
    1203.04 Inteligencia Artificial
    Palabras Clave
    Robots
    Visual recognition
    Reconocimiento visual
    ISSN
    0921-8890
    Revisión por pares
    SI
    DOI
    10.1016/j.robot.2021.103830
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades (grant RTI2018-096652-B-I00)
    Junta de Castilla y León (grant VA233P18)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0921889021001159?via%3Dihub
    Propietario de los Derechos
    © 2021 Elsevier
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/48617
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • ITAP - Artículos de revista [53]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Visual-recognition-of-gymnastic-exercise.pdf
    Tamaño:
    34.68Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10