dc.contributor.author | Astray, Gonzalo | |
dc.contributor.author | Mejuto, Juan Carlos | |
dc.contributor.author | Martínez Martínez, Víctor | |
dc.contributor.author | Nevares Domínguez, Ignacio Gerardo | |
dc.contributor.author | Álamo Sanza, María del | |
dc.contributor.author | Simal Gandara, Jesus | |
dc.date.accessioned | 2022-10-21T11:55:06Z | |
dc.date.available | 2022-10-21T11:55:06Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Molecules, 2019, vol. 24, n. 5, 826 | es |
dc.identifier.issn | 1420-3049 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/56437 | |
dc.description | Producción Científica | es |
dc.description.abstract | A combination of physical-chemical analysis has been used to monitor the aging of red wines from D.O. Toro (Spain). The changes in the chemical composition of wines that occur over the aging time can be used to distinguish between wine samples collected after one, four, seven and ten months of aging. Different computational models were used to develop a good authenticity tool to certify wines. In this research, different models have been developed: Artificial Neural Network models (ANNs), Support Vector Machine (SVM) and Random Forest (RF) models. The results obtained for the ANN model developed with sigmoidal function in the output neuron and the RF model permit us to determine the aging time, with an average absolute percentage deviation below 1%, so it can be concluded that these two models have demonstrated their capacity to predict the age of wine. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.classification | Wine | es |
dc.subject.classification | Vino | es |
dc.subject.classification | Prediction models | es |
dc.subject.classification | Modelos predictivos | es |
dc.title | Prediction models to control aging time in red wine | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2019 The Authors | es |
dc.identifier.doi | 10.3390/molecules24050826 | es |
dc.relation.publisherversion | https://www.mdpi.com/1420-3049/24/5/826 | es |
dc.peerreviewed | SI | es |
dc.description.project | Programa de Cooperación Interreg V-A España–Portugal (POCTEP) 2014-2020 (project 0377_IBERPHENOL_6_E) | es |
dc.description.project | Xunta de Galicia (postdoctoral grant POS-B/2016/001) | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |