Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/56437
Título
Prediction models to control aging time in red wine
Autor
Año del Documento
2019
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Molecules, 2019, vol. 24, n. 5, 826
Resumen
A combination of physical-chemical analysis has been used to monitor the aging of red wines from D.O. Toro (Spain). The changes in the chemical composition of wines that occur over the aging time can be used to distinguish between wine samples collected after one, four, seven and ten months of aging. Different computational models were used to develop a good authenticity tool to certify wines. In this research, different models have been developed: Artificial Neural Network models (ANNs), Support Vector Machine (SVM) and Random Forest (RF) models. The results obtained for the ANN model developed with sigmoidal function in the output neuron and the RF model permit us to determine the aging time, with an average absolute percentage deviation below 1%, so it can be concluded that these two models have demonstrated their capacity to predict the age of wine.
Palabras Clave
Wine
Vino
Prediction models
Modelos predictivos
ISSN
1420-3049
Revisión por pares
SI
Patrocinador
Programa de Cooperación Interreg V-A España–Portugal (POCTEP) 2014-2020 (project 0377_IBERPHENOL_6_E)
Xunta de Galicia (postdoctoral grant POS-B/2016/001)
Xunta de Galicia (postdoctoral grant POS-B/2016/001)
Version del Editor
Propietario de los Derechos
© 2019 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Atribución 4.0 Internacional