Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/63485
Título
Big data and machine learning to improve European grapevine moth (Lobesia botrana) predictions
Autor
Año del Documento
2023
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Plants, 2023, Vol. 12, Nº. 3, 633
Resumen
Machine Learning (ML) techniques can be used to convert Big Data into valuable information for agri-environmental applications, such as predictive pest modeling. Lobesia botrana (Denis & Schiffermüller) 1775 (Lepidoptera: Tortricidae) is one of the main pests of grapevine, causing high productivity losses in some vineyards worldwide. This work focuses on the optimization of the Touzeau model, a classical correlation model between temperature and L. botrana development using data-driven models. Data collected from field observations were combined with 30 GB of registered weather data updated every 30 min to train the ML models and make predictions on this pest’s flights, as well as to assess the accuracy of both Touzeau and ML models. The results obtained highlight a much higher F1 score of the ML models in comparison with the Touzeau model. The best-performing model was an artificial neural network of four layers, which considered several variables together and not only the temperature, taking advantage of the ability of ML models to find relationships in nonlinear systems. Despite the room for improvement of artificial intelligence-based models, the process and results presented herein highlight the benefits of ML applied to agricultural pest management strategies.
Materias (normalizadas)
Lobesia botrana
Grapes - Diseases and pests
Vid - Enfermedades y plagas
Pesticides - Application
Control de plagas
Big data
Internet of things
Internet de las cosas
Internet - Tecnología
Meteorology
Weather data
Machine learning
Aprendizaje automático
Artificial intelligence
Pests - Integrated control
Manejo integrado de plagas
Plant Science
Ecology
Ecología
Materias Unesco
3102 Ingeniería Agrícola
2509.01 Meteorología agrícola
3101.09 Plaguicidas
1203.04 Inteligencia Artificial
ISSN
2223-7747
Revisión por pares
SI
Patrocinador
European Union’s Connecting Europe Facility (CEF) - (Grant INEA/CEF/ICT/A2018/1837816 GRAPEVINE project)
Version del Editor
Propietario de los Derechos
© 2023 The authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Atribución 4.0 Internacional