• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PROJET DE FIN D'ÉTUDES
    • Trabajos Fin de Grado UVa
    • Voir le document
    •   Accueil de UVaDOC
    • PROJET DE FIN D'ÉTUDES
    • Trabajos Fin de Grado UVa
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64421

    Título
    Explotación de frameworks deep learning aplicados a la astronomía
    Autor
    Torre Guinaldo, Darío de la
    Director o Tutor
    Sahelices Fernández, BenjamínAutoridad UVA
    Buitrago Alonso, FernandoAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela de Ingeniería Informática de ValladolidAutoridad UVA
    Año del Documento
    2021
    Titulación
    Grado en Ingeniería Informática
    Résumé
    Este trabajo tiene como objetivos principales aprender sobre machine learning y utilizar frameworks de deep learning de alto nivel para resolver problemas relacionados con el campo de la astronomía mediante la aplicación de técnicas de redes neuronales. Primero se hará una introducción con los conceptos subyacentes de las redes neuronales. Después se hará un estudio comparativo mediante ejemplos de 4 de los principales frameworks de redes neuronales actuales: TensorFlow, Keras, PyTorch y Fastai. Por último, se utilizará Fastai para resolver problemas de clasi cación, regresión y segmentación de imágenes astronómicas de galaxias del espacio profundo.
    Palabras Clave
    Deep learning
    Astronomía
    Fastai
    Departamento
    Departamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos)
    Departamento de Física Teórica, Atómica y Óptica
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/64421
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Grado UVa [30858]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    TFG-G6758.pdf
    Tamaño:
    15.95Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10