Mostrar el registro sencillo del ítem
dc.contributor.author | Melero Lázaro, Mónica | |
dc.contributor.author | García Ull, Francisco José | |
dc.date.accessioned | 2024-02-22T07:43:29Z | |
dc.date.available | 2024-02-22T07:43:29Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Profesional De La información Information Professional, 32(5). | es |
dc.identifier.issn | 1699-2407 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/66375 | |
dc.description.abstract | This study explores workplace gender bias in images generated by DALL-E 2, an application for synthesising images based on artificial intelligence (AI). To do this, we used a stratified probability sampling method, dividing the sample into segments on the basis of 37 different professions or prompts, replicating the study by Farago, Eggum-Wilkens and Zhang (2020) on gender stereotypes in the workplace. The study involves two coders who manually input different professions into the image generator. DALL-E 2 generated 9 images for each query, and a sample of 666 images was collected, with a confidence level of 99% and a margin of error of 5%. Each image was subsequently evaluated using a 3-point Likert scale: 1, not stereotypical; 2, moderately stereotypical; and 3, strongly stereotypical. Our study found that the images generated replicate gender stereotypes in the workplace. The findings presented indicate that 21.6% of AI-generated images depicting professionals exhibit full stereotypes of women, while 37.8% depict full stereotypes of men. While previous studies conducted with humans found that gender stereotypes in the workplace exist, our research shows that AI not only replicates this stereotyping, but reinforces and increases it. Consequently, while human research on gender bias indicates strong stereotyping in 35% of instances, AI exhibits strong stereotyping in 59.4% of cases. The results of this study emphasise the need for a diverse and inclusive AI development community to serve as the basis for a fairer and less biased AI. | en |
dc.format.mimetype | application/pdf | es |
dc.language.iso | spa | es |
dc.publisher | EPI SL | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Inteligencia artificial | es |
dc.subject | Estereotipos de género | es |
dc.subject | DALL-E | es |
dc.subject | Diferencias de género | es |
dc.subject.classification | Artificial intelligence | es |
dc.subject.classification | Open AI | es |
dc.subject.classification | Synthetic images | es |
dc.subject.classification | Gender stereotypes | es |
dc.subject.classification | Sex biases | es |
dc.subject.classification | Professions | es |
dc.title | Gender stereotypes in AI-generated images | en |
dc.title.alternative | Estereotipos de género en imágenes generadas mediante inteligencia artificial | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © Los autores | es |
dc.identifier.doi | https://doi.org/10.3145/epi.2023.sep.05 | es |
dc.relation.publisherversion | https://revista.profesionaldelainformacion.com/index.php/EPI/article/view/87305 | es |
dc.identifier.publicationissue | 5 | es |
dc.identifier.publicationtitle | El Profesional de la Información | es |
dc.identifier.publicationvolume | 32 | es |
dc.peerreviewed | SI | es |
dc.description.project | Poyecto “Flujos de desinformación, polarización y crisis de la intermediación mediática (Disflows) (PID2020-113574RB-I00)”, financiado por el Ministerio de Ciencia e Innovación de España. | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 1203.04 Inteligencia Artificial | es |
dc.subject.unesco | 5206.09 Sexo | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional