Mostrar el registro sencillo del ítem

dc.contributor.authorMelero Lázaro, Mónica
dc.contributor.authorGarcía Ull, Francisco José
dc.date.accessioned2024-02-22T07:43:29Z
dc.date.available2024-02-22T07:43:29Z
dc.date.issued2023
dc.identifier.citationProfesional De La información Information Professional, 32(5).es
dc.identifier.issn1699-2407es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/66375
dc.description.abstractThis study explores workplace gender bias in images generated by DALL-E 2, an application for synthesising images based on artificial intelligence (AI). To do this, we used a stratified probability sampling method, dividing the sample into segments on the basis of 37 different professions or prompts, replicating the study by Farago, Eggum-Wilkens and Zhang (2020) on gender stereotypes in the workplace. The study involves two coders who manually input different professions into the image generator. DALL-E 2 generated 9 images for each query, and a sample of 666 images was collected, with a confidence level of 99% and a margin of error of 5%. Each image was subsequently evaluated using a 3-point Likert scale: 1, not stereotypical; 2, moderately stereotypical; and 3, strongly stereotypical. Our study found that the images generated replicate gender stereotypes in the workplace. The findings presented indicate that 21.6% of AI-generated images depicting professionals exhibit full stereotypes of women, while 37.8% depict full stereotypes of men. While previous studies conducted with humans found that gender stereotypes in the workplace exist, our research shows that AI not only replicates this stereotyping, but reinforces and increases it. Consequently, while human research on gender bias indicates strong stereotyping in 35% of instances, AI exhibits strong stereotyping in 59.4% of cases. The results of this study emphasise the need for a diverse and inclusive AI development community to serve as the basis for a fairer and less biased AI.en
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherEPI SLes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectInteligencia artificiales
dc.subjectEstereotipos de géneroes
dc.subjectDALL-Ees
dc.subjectDiferencias de géneroes
dc.subject.classificationArtificial intelligencees
dc.subject.classificationOpen AIes
dc.subject.classificationSynthetic imageses
dc.subject.classificationGender stereotypeses
dc.subject.classificationSex biaseses
dc.subject.classificationProfessionses
dc.titleGender stereotypes in AI-generated imagesen
dc.title.alternativeEstereotipos de género en imágenes generadas mediante inteligencia artificiales
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© Los autoreses
dc.identifier.doihttps://doi.org/10.3145/epi.2023.sep.05es
dc.relation.publisherversionhttps://revista.profesionaldelainformacion.com/index.php/EPI/article/view/87305es
dc.identifier.publicationissue5es
dc.identifier.publicationtitleEl Profesional de la Informaciónes
dc.identifier.publicationvolume32es
dc.peerreviewedSIes
dc.description.projectPoyecto “Flujos de desinformación, polarización y crisis de la intermediación mediática (Disflows) (PID2020-113574RB-I00)”, financiado por el Ministerio de Ciencia e Innovación de España.es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203.04 Inteligencia Artificiales
dc.subject.unesco5206.09 Sexoes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem