• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Grupos de Investigación
    • Untitled
    • GCME - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Grupos de Investigación
    • Untitled
    • GCME - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66407

    Título
    Interpretability of deep learning models in analysis of Spanish financial text
    Autor
    Vaca Rodríguez, CésarAutoridad UVA
    Astorgano, Manuel
    López-Rivero, Alfonso J.
    Tejerina Gaite, Fernando AdolfoAutoridad UVA Orcid
    Sahelices Fernández, BenjamínAutoridad UVA Orcid
    Año del Documento
    2024
    Editorial
    Springer Link
    Documento Fuente
    26 February 2024
    Zusammenfassung
    Artificial intelligence methods based on deep learning (DL) have recently made significant progress in many different areas including free text classification and sentiment analysis. We believe that corporate governance is one of these areas, where DL can generate very valuable and differential knowledge, for example, by analyzing the biographies of independent directors, which allows for qualitative modeling of their profile in an automatic way. For this technology to be accepted it is important to be able to explain how it generates its results. In this work we have developed a six-dimensional labeled dataset of independent director biographies, implemented three recurrent DL models based on LSTM and transformers along with four ensembles, one of which is an innovative proposal based on a multi-layer perceptron (MLP), trained them using Spanish language and economics and finance terminology and performed a comprehensive test study that demonstrates the accuracy of the results. We have also performed a complete study of explainability using the SHAP methodology by comparatively analyzing the developed models. We have achieved a mean error (MAE) of 8% in the modeling of the open text biographies, which has allowed us to perform a case study of time analysis that has detected significant variations in the composition of the Standard Expertise Profile (SEP) of the boards of directors, related to the crisis of the period 2008–2013. This work shows that DL technology can be accurately applied to free text analysis in the finance and economic domain, by automatically analyzing large volumes of data to generate knowledge that would have been unattainable by other means.
    Palabras Clave
    Machine learning
    Deep learning
    Boards of directors profiling
    Interpretability
    Artificial intelligence
    Finance
    Economics
    ISSN
    0941-0643
    Revisión por pares
    SI
    DOI
    10.1007/s00521-024-09474-8
    Patrocinador
    CRUE-CSIC agreement with Springer Nature. Open access funding provided by Universidad de Valladolid within the CRUE-CSIC Transformative Agreement
    Version del Editor
    https://link.springer.com/article/10.1007/s00521-024-09474-8?utm_source=rct_congratemailt&utm_medium=email&utm_campaign=oa_20240226&utm_content=10.1007/s00521-024-09474-8#article-info
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/66407
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GCME - Artículos de revista [57]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    s00521-024-09474-8.pdf
    Tamaño:
    3.711Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Atribución 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10