Zur Kurzanzeige

dc.contributor.authorVinuesa, Guillermo
dc.contributor.authorGarcía, Hector
dc.contributor.authorDueñas, Salvador
dc.contributor.authorCastán, Helena
dc.contributor.authorJiménez-Molinos, Francisco
dc.contributor.authorGonzález, Mireia B.
dc.contributor.authorCampabadal, Francesca
dc.contributor.authorRoldán, Juan B.
dc.date.accessioned2024-05-20T15:40:32Z
dc.date.available2024-05-20T15:40:32Z
dc.date.issued2014-08-15
dc.identifier.citationMaterials Science in Semiconductor Processing, Volume 179, 15 August 2024, 108480es
dc.identifier.issn1873-4081es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/67733
dc.descriptionProducción Científicaes
dc.description.abstractThe dependence of the current in TiN/Ti/HfO2/W devices on the temperature is investigated in the range from 78 K to 340 K. Resistive switching cycles at 78 K are conducted to explore the thermal dependence in filament configurations with different intermediate resistance states. The less conductive states show an increase of the current as the temperature rises, while the fully formed filament displays a metallic-like behavior. A comprehensive model, based on the Stanford Model including a series resistance, is proposed and successfully validated by experimental data. The interplay between the ohmic and non-linear components in the model for different filament states is analyzed, emphasizing the dominance of the non-linear component (and its corresponding thermal dependence) in partially formed filaments and the prevalence of the ohmic component in the fully formed filament, which shows a decreasing current as the temperature rises. A complete compact model for simulation of circuits including the thermal dependence of these devices is developed.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherELSEVIERes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.titleThermal dependence of the current in TiN/Ti/HfO2/W memristors at different intermediate conduction stateses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.1016/j.mssp.2024.108480es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1369800124003767?via%3Dihubes
dc.identifier.publicationtitleMaterials Science in Semiconductor Processinges
dc.identifier.publicationvolume179es
dc.peerreviewedSIes
dc.description.projectPID2022-139586NB-C42, PID2022- 139586NB-C43, PID2022-139586NB-C44 funded by MICIU/AEI/ 10.13039/501100011033 and FEDER, UE. IMB authors thank the CSIC funding through project 20225AT012 and the Generalitat de Catalunya- AGAUR for project 2021 SGR 00497. M.B.G. acknowledges the grant RYC2020-030150-I funded by MICIU/AEI/10.13039/501100011033 and by “ESF Investing in your future”es
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige