• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/67809

    Título
    Comparative study of continuous hourly energy consumption forecasting strategies with small data sets to support demand management decisions in buildings
    Autor
    Mariano Hernández, Deyslen
    Hernández Callejo, LuisAutoridad UVA Orcid
    Solís, M.
    Zorita Lamadrid, Ángel LuisAutoridad UVA Orcid
    Duque Pérez, ÓscarAutoridad UVA Orcid
    Gonzalez‐Morales, L.
    Alonso Gómez, VíctorAutoridad UVA Orcid
    Jaramillo Duque, A.
    Santos García, F.
    Año del Documento
    2022
    Editorial
    Wiley
    Descripción
    Producción Científica
    Documento Fuente
    Energy Science & Engineering, december 2022, 10(12), 4694-4707
    Résumé
    Buildings are one of the largest consumers of electrical energy, making it important to develop different strategies to help to reduce electricity consumption. Building energy consumption forecasting strategies are widely used to support demand management decisions, but these strategies require large data sets to achieve an accurate electric consumption forecast, so they are not commonly used for buildings with a short history of record keeping. Based on this, the objective of this study is to determine, through continuous hourly electricity consumption forecasting strategies, the amount of data needed to achieve an accurate forecast. The proposed forecasting strategies were evaluated with Random Forest, eXtreme Gradient Boost, Convolutional Neural Network, and Temporal Convolutional Network algorithms using 4 years of electricity consumption data from two buildings located on the campus of the University of Valladolid. For performance evaluation, two scenarios were proposed for each of the proposed forecasting strategies. The results showed that for forecasting horizons of 1 week, it was possible to obtain a mean absolute percentage error (MAPE) below 7% for Building 1 and a MAPE below 10% for Building 2 with 6 months of data, while for a forecast horizon of 1 month, it was possible to obtain a MAPE below 10% for Building 1 and below 11% for Building 2 with 10 months of data. However, if the distribution of the data captured in the buildings does not undergo sudden changes, the decision tree algorithms obtain better results. However, if there are sudden changes, deep learning algorithms are a better choice.
    Palabras Clave
    Building energy consumption
    Forecasting
    Learning algorithms
    Multistep forecasting
    Short‐term forecasting
    ISSN
    2050-0505
    Revisión por pares
    SI
    DOI
    10.1002/ese3.1298
    Patrocinador
    CITIES thematic network, a member of the CYTED program. CYTED, grant number: 518RT0558
    University of Valladolid and the Instituto Tecnológico de Santo Domingo for their support in this study, which is the result of a co-supervised doctoral thesis
    Version del Editor
    https://onlinelibrary.wiley.com/doi/10.1002/ese3.1298
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/67809
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP42 - Artículos de revista [291]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Energy Science Engineering - 2022 - Mariano‐Hernández - Comparative study of continuous hourly energy consumption.pdf
    Tamaño:
    3.061Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10