• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Institutos de Investigación
    • Instituto Universitario de Investigación en Procesos Sostenibles (IPS)
    • IPS - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Institutos de Investigación
    • Instituto Universitario de Investigación en Procesos Sostenibles (IPS)
    • IPS - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/72897

    Título
    Wastewater-based epidemiology for COVID-19 using dynamic artificial neural networks
    Autor
    Zamarreño Cosme, Jesús MaríaAutoridad UVA Orcid
    Torres Franco, Andrés FelipeAutoridad UVA
    Carita Gonçalves, José ManuelAutoridad UVA Orcid
    Muñoz Torre, RaúlAutoridad UVA Orcid
    Rodríguez Rodríguez, Elisa
    Eiros Bouza, José MaríaAutoridad UVA Orcid
    García Encina, Pedro AntonioAutoridad UVA Orcid
    Año del Documento
    2024
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Science of The Total Environment, marzo 2024, vol. 917, 170367
    Resumen
    Global efforts in vaccination have led to a decrease in COVID-19 mortality but a high circulation of SARS-CoV-2 is still observed in several countries, resulting in some cases of severe lockdowns. In this sense, wastewater-based epidemiology remains a powerful tool for supporting regional health administrations in assessing risk levels and acting accordingly. In this work, a dynamic artificial neural network (DANN) has been developed for predicting the number of COVID-19 hospitalized patients in hospitals in Valladolid (Spain). This model takes as inputs a wastewater epidemiology indicator for COVID-19 (concentration of RNA from SARS-CoV-2 N1 gene reported from Valladolid Wastewater Treatment Plant), vaccination coverage, and past data of hospitalizations. The model considered both the instantaneous values of these variables and their historical evolution. Two study periods were selected (from May 2021 until September 2022 and from September 2022 to July 2023). During the first period, accurate predictions of hospitalizations (with an overall range between 6 and 171) were favored by the correlation of this indicator with N1 concentrations in wastewater (r = 0.43, p < 0.05), showing accurate forecasting for 1 day ahead and 5 days ahead. The second period's retraining strategy maintained the overall accuracy of the model despite lower hospitalizations. Furthermore, risk levels were assigned to each 1 day ahead prediction during the first and second periods, showing agreement with the level measured and reported by regional health authorities in 95 % and 93 % of cases, respectively. These results evidenced the potential of this novel DANN model for predicting COVID-19 hospitalizations based on SARS-CoV-2 wastewater concentrations at a regional scale. The model architecture herein developed can support regional health authorities in COVID-19 risk management based on wastewater-based epidemiology.
    Materias Unesco
    3202 Epidemiología
    3308.10 Tecnología de Aguas Residuales
    Palabras Clave
    Artificial neural network
    COVID-19
    Hospitalization rates
    Risk levels
    SARS-CoV-2 RNA footprint
    Wastewater-based epidemiology
    ISSN
    0048-9697
    Revisión por pares
    SI
    DOI
    10.1016/j.scitotenv.2024.170367
    Patrocinador
    Junta de Castilla y León/FEDER (CL-EI-2021-07, VA266P20, UIC 233, UIC320, UIC315)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0048969724005023
    Propietario de los Derechos
    © 2024 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/72897
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • IPS - Artículos de revista [156]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    scitotenv917_wastewater-based-epidemiology-covid19-using-dynamic-artificial-neural-networks.pdf
    Tamaño:
    10.47Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10