Mostrar el registro sencillo del ítem

dc.contributor.authorSchwarz, Alexander
dc.contributor.authorRodríguez Rahal, Jhonny
dc.contributor.authorSahelices Fernández, Benjamín 
dc.contributor.authorBarroso García, Verónica 
dc.contributor.authorWeis, Ronny
dc.contributor.authorDuque Antón, Simón
dc.date.accessioned2025-03-04T12:47:49Z
dc.date.available2025-03-04T12:47:49Z
dc.date.issued2024
dc.identifier.citationArtificial Intelligence Review, 2024, vol. 58, n.1es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/75222
dc.descriptionProducción Científicaes
dc.description.abstractMachine-learning-based predictive maintenance models, i.e. models that predict break- downs of machines based on condition information, have a high potential to minimize maintenance costs in industrial applications by determining the best possible time to per- form maintenance. Modern machines have sensors that can collect all relevant data of the operating condition and for legacy machines which are still widely used in the industry, retrofit sensors are readily, easily and inexpensively available. With the help of this data it is possible to train such a predictive maintenance model. The main problem is that most data is obtained from normal operating conditions, whereas only limited data are from failures. This leads to highly unbalanced data sets, which makes it very difficult, if not impossible, to train a predictive maintenance model that can detect faults reliably and timely. Another issue is the lack of available real data due to privacy concerns. To address these problems, a suitable data generation strategy is needed. In this work, a litera- ture review is conducted to identify a solution approach for a suitable data augmentation strategy that can be applied to our specific use case of hydrogen combustion engines in the automotive field. This literature review shows that, among the different state-of-the-art proposals, the most promising for the generation of reliable synthetic data are the ones based on generative models. The analysis of the different metrics used in the state of the art allows to identify the most suitable ones to evaluate the quality of generated signals. Finally, an open problem in research in this area is identified and it is the need to validate the plausibility of the data generated. The generation of results in this area will contribute decisively to the development of predictive maintenance models.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationData augmentationes
dc.subject.classificationPredictive maintenancees
dc.subject.classificationAnomaly detectiones
dc.subject.classificationGenerative modelses
dc.titleData augmentation in predictive maintenance applicable to hydrogen combustion engines: a reviewes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The Author(s)es
dc.identifier.doi10.1007/s10462-024-11021-9es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s10462-024-11021-9es
dc.identifier.publicationissue1es
dc.identifier.publicationtitleArtificial Intelligence Reviewes
dc.identifier.publicationvolume58es
dc.peerreviewedSIes
dc.description.projectPublicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLEes
dc.description.projectThis work was supported by the German Federal Ministry for Economic Affairs and Climate Action (BMWK), under grant No. (19I21028R)es
dc.description.projectMinisterio de Ciencia, Innovación y Universidades MICIU - projects CPP2022-009735 and PID2020-115468RB-I00es
dc.description.projectHer research was also funded by the “CIBER-Cons- orcio Centro de Investigación Biomédica en Red” (CB19/01/00012) through “Instituto de Salud Carlos III”, co-funded with European Regional Development Fund.es
dc.identifier.essn1573-7462es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem