Afficher la notice abrégée

dc.contributor.authorDimitriadis, Yannis
dc.contributor.authorPrieto Santos, Luis Pablo 
dc.contributor.authorJovanovic, Jelena
dc.contributor.authorOdriozola González, Paula 
dc.contributor.authorRodríguez Triana, María Jesús 
dc.contributor.authorDíaz Chavarría, Henry Benjamín
dc.contributor.authorDimitriadis, Yannis
dc.date.accessioned2025-06-30T08:31:26Z
dc.date.available2025-06-30T08:31:26Z
dc.date.issued2025
dc.identifier.citationLearning and Individual Differences, 2025, vol. 121, p. 102705es
dc.identifier.issn1041-6080es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/76150
dc.descriptionProducción Científicaes
dc.description.abstractDoctoral education (DE) suffers from widespread well-being issues. Recent evidence from short-term training actions shows potential to address them, but also large variability. Further, DE practitioners face challenges in understanding whether (and for whom) such interventions work, due to small sample sizes, short intervention durations, and the inherent uniqueness of each dissertation. This methodological paper proposes a novel, practice-oriented, and idiographic approach to such understanding, supported by learning analytics of quanti- tative and qualitative data. To illustrate this approach, we apply it to two datasets from six authentic doctoral workshops (N = 105 doctoral students), showcasing how it can provide individualized practice-oriented insights to doctoral students and help trainers better understand their interventions, while coping with typical limitations of data from doctoral training. These findings exemplify how the triangulation of simple, interpretable analytics models of mixed longitudinal data can improve students, practitioners’, and researchers’ understanding, re- design, and personalization of such training actions. Educational relevance and implications statement: Collecting data about the context and process of a doctoral training action can help practitioners and students understand who benefits more (or less) from such training. The individualized analysis of such data, obtained with even very simple technologies, can also help students understand their processes and contexts, to better address progress and well-being issues. The use of student- authored short narratives (e.g., diaries), along with longitudinal quantitative data, plays an important role in these personalized analyses, and the promise of automated qualitative coding makes this approach increasingly feasiblees
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subject.classificationDoctoral educationes
dc.subject.classificationLearning analyticses
dc.subject.classificationWell-beinges
dc.subject.classificationIdiographic methodses
dc.subject.classificationMixed methodses
dc.titleDisentangling doctoral well-being support in progress-focused workshops: Combining qualitative and quantitative data in single-case learning analyticses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Author(s)es
dc.identifier.doi10.1016/j.lindif.2025.102705es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1041608025000810es
dc.identifier.publicationfirstpage102705es
dc.identifier.publicationtitleLearning and Individual Differenceses
dc.identifier.publicationvolume121es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades MCIN/AEI/10.13039/ 501100011033 (grants PID2020-112584RB- C32 and PID2023-146692OB-C32) and (grants RYC2021-032273-I and RYC2022-037806-I)es
dc.description.projectJunta de Castilla y León (grant VA176P23)es
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco58 Pedagogíaes


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée