• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/76925

    Título
    Enhancing photovoltaic cell classification through Mamdani Fuzzy logic: a comparative study with machine learning approaches employing electroluminescence images
    Autor
    Mateo Romero, Héctor FelipeAutoridad UVA Orcid
    Carbonó de la Rosa, Mario Eduardo
    Hernández Callejo, LuisAutoridad UVA Orcid
    González Rebollo, Miguel ÁngelAutoridad UVA
    Cardeñoso Payo, ValentínAutoridad UVA Orcid
    Alonso Gómez, VíctorAutoridad UVA Orcid
    Gallardo Saavedra, SaraAutoridad UVA Orcid
    Morales Aragones, José IgnacioAutoridad UVA Orcid
    Año del Documento
    2025
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    Progress in Artificial Intelligence, 2025, vol. 14, p. 49-59.
    Abstract
    This study introduces a Mamdani Fuzzy Logic model designed to classify solar cells based on their energetic performance. The model incorporates three distinct inputs, namely the proportions of black pixels, gray pixels, and white pixels, extracted from Electroluminescence images of the cells. Additionally, an output is included to signal potential issues with input data. The development of the model involved utilizing cells with known performance, determined through the measurement of Intensity-Voltage Curves. The efficacy of the model was demonstrated through testing with a validation set, yielding an accuracy rate of 99.0% in the Polycrystalline dataset and 98% in the Monocrystalline. In comparison, traditional machine learning methods such as Ensemble Classifiers and Decision Trees achieved inferior accuracy rates. These results show the superior problem-solving capability of the presented Fuzzy Logic model over conventional machine-learning approaches.
    Materias Unesco
    3322 Tecnología energética
    Palabras Clave
    Fuzzy logic
    Photovoltaic
    Electroluminescence
    Machine learning
    ISSN
    2192-6352
    Revisión por pares
    SI
    DOI
    10.1007/s13748-024-00353-w
    Patrocinador
    "Contratos Predoctorales UVA 2020" funded by Universidad de Valladolid and Santander Bank
    Project "PID2020-113533RB-C33" financed by Spanish Ministry of Science and Innovation
    "Convenio general de cooperación entre la Universidad de Valladolid (España) y la Corporación Universidad de la Costa (Colombia)"
    ERASMUS+ KA-107 from the Universidad of Valladolid
    MOVILIDAD DE DOCTORANDOS Y DOCTORANDAS UVa 2023 from the University of Valladolid
    Version del Editor
    https://link.springer.com/article/10.1007/s13748-024-00353-w
    Propietario de los Derechos
    © Springer
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/76925
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP42 - Artículos de revista [295]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    Enhancing_Photovoltaic_Cell_Classification_Springer.pdfEmbargado hasta: 2025-11-14
    Tamaño:
    2.835Mb
    Formato:
    Adobe PDF
    Mostra/Apri

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10