• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/79844

    Título
    An explainable deep learning approach for sleep staging in sleep apnea patients across all age subgroups from pulse oximetry signals
    Autor
    Vaquerizo Villar, FernandoAutoridad UVA Orcid
    Gutierrez Tobal, Gonzalo CésarAutoridad UVA Orcid
    Álvarez González, DanielAutoridad UVA Orcid
    Martín Montero, AdriánAutoridad UVA
    Gozal, David
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Año del Documento
    2025
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Engineering Applications of Artificial Intelligence, 2025, vol. 162, p. 112562
    Résumé
    Deep-learning (DL) approaches have been developed using pulse rate (PR) and blood oxygen saturation (SpO2) recordings from pulse oximetry to streamline sleep staging, particularly for obstructive sleep apnea (OSA) pa- tients. However, lack of interpretability and validation across patients from a wide range of ages (children, adolescents, adults, and elderly OSA individuals) are two major concerns. In this study, a DL model based on the U-Net framework (POxi-SleepNet) was tailored to accurately perform 4-class sleep staging (wake, light sleep, deep sleep, and rapid-eye movement sleep) in OSA patients across all age subgroups using PR and SpO2 signals. An explainable artificial intelligence (XAI) methodology based on semantic segmentation via gradient-weighted class activation mapping (Seg-Grad-CAM) was also applied to quantitatively interpret the time and frequency characteristics of pulse oximetry recordings that influence sleep stage classification. Overnight PR and SpO2 signals from 17303 sleep studies from six datasets encompassing children, adolescents, adults, and elderly OSA individuals were used. POxi-SleepNet showed high performance for sleep staging in the six databases, with accuracies between 81.5 % and 84.5 % and Cohen’s kappa values from 0.726 to 0.779. It also demonstrated greater generalizability than previous studies. XAI analysis showed the key contributions of mean and variability in PR and SpO2 amplitude, as well as changes in their spectral content across specific frequency bands (0.004–0.020 Hz, 0.020–0.100 Hz, and 0.180–0.400 Hz), for sleep stage classification. These findings indicate that POxi-SleepNet could effectively automate sleep staging and assist in diagnosing OSA across all age groups in clinical settings.
    Materias Unesco
    32 Ciencias Médicas
    Palabras Clave
    Age subgroups
    Deep learning
    Explainable artificial intelligence
    Pulse oximetry
    Obstructive sleep apnea
    Sleep stages
    ISSN
    0952-1976
    Revisión por pares
    SI
    DOI
    10.1016/j.engappai.2025.112562
    Patrocinador
    Ministerio de Ciencia, Innovación - MCIN/AEI/10.13039/50110001103, el Fondo Social (FSE+) y la Unión Europea. “NextGenerationEU”/PRTR (projects PID2023-148895OB-I00, PID2020-115468RB-I00, and CPP2022-009735)
    Esta investigación fue cofinanciada por la Unión Europea a través del Programa Interreg VI-A España-Portugal (POCTEP) 2021-2027 (0043_NET4SLEEP_2_E)
    Consorcio del Centro de Investigación Biomédica en Red (CIBER) en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (CB19/01/00012) a través del Instituto de Salud Carlos III (ISCIII), cofinanciado con el Fondo Europeo de Desarrollo Regional
    Instituto de Salud Carlos III (ISCIII), cofinanciada por el FSE+ (beca «Sara Borrell» (CD23/00031))
    Ministerio de Ciencia e Innovación - MCIN/AEI/10.13039/501100011033 y el Fondo Social Europeo «Invertir en tu futuro» (beca «Ramón y Cajal» (RYC2019-028566-I))
    Instituto Nacional sobre el Envejecimiento (grant AG061824)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S095219762502593X
    Propietario de los Derechos
    © 2025 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/79844
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GIB - Artículos de revista [43]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    An-explainable-deep-learning-approach-for-sleep.pdf
    Tamaño:
    10.92Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10