Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80943
Título
Pilot-scale optimization of a physical–chemical biogas upgrading system based on a high alkalinity absorbent at ambient pressure and temperature
Año del Documento
2026
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Fuel, 2026, vol. 411, p. 138010
Resumen
The optimization of an innovative process consisting of chemical absorption–desorption at ambient pressure and temperature with EDTA-Fe/carbonate solutions devoted to biogas upgrading was conducted. The influence of parameters such as the initial pH (9–10), inorganic carbon concentration (IC) (4000–8000 mg/L), biogas flowrate (BF) (30–90 L/d), air flowrate (AF) (300–1500 L/d), L/G ratio (0.7–3) and EDTA-Fe concentration (Fe) (0–30 mM) on biomethane composition was evaluated. In addition, the effect of carbon-coated iron nanoparticles on CO2 absorption performance was investigated. The L/G ratio governed the O2 concentration in the biomethane. Interestingly, the addition of EDTA-Fe was not necessary for the complete removal of H2S from the biogas. BF, AF and IC exerted a significant influence on the biomethane CO2 concentration (BF > AF > IC), while the initial pH induced no effect. On the other hand, the supplementation of iron nanoparticles did not significantly influence on the CO2 absorption performance. The optimal conditions in a 7 L absorption-7 L desorption system were: BF = 90 L/d, AF = 1500 L/d, L/G = 0.7, IC = 8000 mg C/L, initial pH = 9.5 and Fe = 0 mM. Under these operational conditions, the biomethane obtained was free of H2S and average concentrations of CO2, O2, N2 and CH4 of 1.7 ± 0.1 %, 0.7 ± 0.1 %, 2.7 ± 0.5 % and 94.9 ± 0.6 %, respectively, were recorded for 3 weeks of continuous operation. This biomethane complied with the European standard EN 16273 on the biomethane use for injection into natural gas networks.
Materias Unesco
3308 Ingeniería y Tecnología del Medio Ambiente
Palabras Clave
Biogas chemical absorption
Biomethane
Carbon-coated iron nanoparticles
EDTA-Fe/carbonate solution
EN 16723
ISSN
0016-2361
Revisión por pares
SI
Patrocinador
This research was funded by the Spanish Research Agency via the Public-Private Collaboration Programme (CPP2021-008427).
Version del Editor
Propietario de los Derechos
© 2025 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Atribución 4.0 Internacional










