• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PROJET DE FIN D'ÉTUDES
    • Trabajos Fin de Grado UVa
    • Voir le document
    •   Accueil de UVaDOC
    • PROJET DE FIN D'ÉTUDES
    • Trabajos Fin de Grado UVa
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/57983

    Título
    Teorema de Riemann-Roch para superficies de Riemann compactas
    Autor
    Arranz Díez, Juan Marcos
    Director o Tutor
    Mozo Fernández, JorgeAutoridad UVA
    Editor
    Universidad de Valladolid. Facultad de CienciasAutoridad UVA
    Año del Documento
    2022
    Titulación
    Grado en Matemáticas
    Résumé
    En este trabajo presentamos una demostración para el caso de superficies de Riemann compactas. Para ello definiremos y desarrollaremos una serie de conceptos y herramientas que permitirán expresarlo con sencillez e interpretarlo. Algunos de ellos no habían sido definidos cuando el teorema se planteó: por ejemplo, la noción de haz no fue tratada la mitad del siglo XX, casi cien años después de la formulación original. El enfoque que emplearemos será entonces analítico en lugar de un tratamiento desde la geometría algebraica. Como veremos, toda curva algebraica plana puede considerarse como una superficie de Riemann; reciprocamente, existen resultados como el Teorema de Chow que permiten tratar una superficie de Riemann como una variedad algebraica en un espacio proyectivo.
    Palabras Clave
    Riemann-Roch
    Riemann-Roch, Superficie de Riemann
    Departamento
    Departamento de Análisis Matemático y Didáctica Matemática
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/57983
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Grado UVa [30858]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    TFG-G5974.pdf
    Tamaño:
    1.241Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10