Mostrar el registro sencillo del ítem

dc.contributor.authorRahal, Jhonny Rodriguez
dc.contributor.authorSchwarz, Alexander
dc.contributor.authorSahelices, Benjamín
dc.contributor.authorWeis, Ronny
dc.contributor.authorAntón, Simon Duque
dc.date.accessioned2024-02-12T11:39:28Z
dc.date.available2024-02-12T11:39:28Z
dc.date.issued2023
dc.identifier.citationJournal of Intelligent Manufacturinges
dc.identifier.issn0956-5515es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/66171
dc.descriptionProducción Científicaes
dc.description.abstractThe emergence of the Internet of Things and the interconnection of systems and machines enables the idea of Industry 4.0, a new industrial paradigm with a strong focus on interaction and communication between physical and digital entities, leading to the creation of cyber-physical systems. The digital twin and the standard for the Asset Administration Shell are concepts derived from Industry 4.0 that exploit the advantages of connecting the physical and virtual domains, improving the management and display of the collected data. Furthermore, the increasing availability of data has enabled the implementation of data-driven approaches, such as machine and deep learning models, for predictive maintenance in industrial and automotive applications. This paper provides a two-dimensional review of the Asset Administration Shell and data-driven methods for predictive maintenance, including fault diagnosis and prognostics. Additionally, a digital twin architecture combining the Asset Administration Shell, predictive maintenance and data-driven methods is proposed within the context of the WaVe project.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherSPRINGER LINKes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subject.classificationAsset administration shelles
dc.subject.classificationPredictive maintenancees
dc.subject.classificationDigital twines
dc.subject.classificationMachine learninges
dc.subject.classificationIndustry 4.0es
dc.subject.classificationWaVees
dc.titleThe asset administration shell as enabler for predictive maintenance: a reviewes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1007/s10845-023-02236-8es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s10845-023-02236-8#Abs1es
dc.identifier.publicationtitleJournal of Intelligent Manufacturinges
dc.peerreviewedSIes
dc.description.projectCRUE-CSIC agreement with Springer Naturees
dc.identifier.essn1572-8145es
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem