Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68120
Título
Application of convolutional neural networks in weed detection and identification: a systematic review
Año del Documento
2024
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Agriculture, 2024, Vol. 14, Nº. 4, 568
Résumé
Weeds are unwanted and invasive plants that proliferate and compete for resources such as space, water, nutrients, and sunlight, affecting the quality and productivity of the desired crops. Weed detection is crucial for the application of precision agriculture methods and for this purpose machine learning techniques can be used, specifically convolutional neural networks (CNN). This study focuses on the search for CNN architectures used to detect and identify weeds in different crops; 61 articles applying CNN architectures were analyzed during the last five years (2019–2023). The results show the used of different devices to acquire the images for training, such as digital cameras, smartphones, and drone cameras. Additionally, the YOLO family and algorithms are the most widely adopted architectures, followed by VGG, ResNet, Faster R-CNN, AlexNet, and MobileNet, respectively. This study provides an update on CNNs that will serve as a starting point for researchers wishing to implement these weed detection and identification techniques
Materias (normalizadas)
Precision agriculture
Agricultural innovations
Agricultura - Innovaciones tecnológicas
Weeds
Malas hierbas
Weeds - Control
Control de malezas
Artificial intelligence -- Agricultural applications
Machine learning
Aprendizaje automático
Computer vision
Visión artificial (Robótica)
Image processing
Imágenes, Tratamiento de las
Neural networks (Computer science)
Redes neuronales (Informática)
Sustainable agriculture
Agricultura sostenible
Materias Unesco
3102 Ingeniería Agrícola
1203.04 Inteligencia Artificial
1203.17 Informática
ISSN
2077-0472
Revisión por pares
SI
Patrocinador
Union Europea, Programa Horizonte - (project HORIZON-CL6-2022-FARM2FORK-01)
Version del Editor
Propietario de los Derechos
© 2024 The authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional