Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/78833
Título
AdSight: Scalable and Accurate Quantification of User Attention in Multi-Slot Sponsored Search
Autor
Congreso
SIGIR 2025 - Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval
Año del Documento
2025
Editorial
Association for Computing Machinery, Inc
Descripción Física
10 p.
Descripción
Producción Científica
Documento Fuente
Nicola Ferro, Maria Maistro, Gabriella Pasi, Omar Alonso, Andrew Trotman, Suzan Verberne. SIGIR '25: Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval. Padua, 2025, p. 255-265.
Abstract
Modern Search Engine Results Pages (SERPs) present complex layouts where multiple elements compete for visibility. Attention modelling is crucial for optimising web design and computational advertising, whereas attention metrics can inform ad placement and revenue strategies. We introduce AdSight, a method leveraging mouse cursor trajectories to quantify in a scalable and accurate manner user attention in multi-slot environments like SERPs. AdSight uses a novel Transformer-based sequence-to-sequence architecture where the encoder processes cursor trajectory embeddings, and the decoder incorporates slot-specific features, enabling robust attention prediction across various SERP layouts. We evaluate our approach on two Machine Learning tasks: (1)~regression, to predict fixation times and counts; and (2)~classification, to determine some slot types were noticed. Our findings demonstrate the model's ability to predict attention with unprecedented precision, offering actionable insights for researchers and practitioners.
Materias (normalizadas)
SERP
Búsqueda patrocinada
Publicidad online
Seguimiento del cursor del ratón
Anuncios multiespacio
Visualizaciones directas
Atención del usuario
Redes neuronales
ISBN
9798400715921
Patrocinador
European Innovation Council (Pathfinder program): SYMBIOTIK project, grant 101071147
Version del Editor
Propietario de los Derechos
© 2025 Copyright held by the owner/author(s).
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional










