Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/81636
Título
EEGSym: Overcoming Inter-Subject Variability in Motor Imagery Based BCIs With Deep Learning
Autor
Año del Documento
2022-06-27
Editorial
IEEE
Descripción
Producción Científica
Documento Fuente
IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 1766-1775, 2022
Resumen
In this study, we present a new Deep Learning (DL) architecture for Motor Imagery (MI) based Brain Computer Interfaces (BCIs) called EEGSym. Our implementation aims to improve previous state-of-the-art performances on MI classification by overcoming inter-subject variability and reducing BCI inefficiency, which has been estimated to affect 10-50% of the population. This convolutional neural network includes the use of inception modules, residual connections and a design that introduces the symmetry of the brain throughthemid-sagittalplane into the network architecture. It is complemented with a data augmentation technique that improves the generalization of the model and with the use of transfer learning across different datasets. We compare EEGSym’s performance on inter-subject MI classification with ShallowConvNet, Deep-ConvNet, EEGNet and EEG-Inception. This comparison is performed on 5 publicly available datasets that include left or right hand motor imagery of 280 subjects. This population is
the largest that has been evaluated in similar studies to date. EEGSym significantly outperforms the baseline models reaching accuracies of 88.6±9.0 on Physionet, 83.3±9.3 on OpenBMI, 85.1±9.5 on Kaya2018, 87.4±8.0 on Meng2019 and 90.2±6.5 on Stieger2021. At the same time, it allows 95.7% of the tested population (268 out of 280 users) to reach BCI control ( 70% accuracy). Furthermore, these results are
achieved using only 16 electrodes of themore than 60 available on some datasets. Our implementation of EEGSym, which includes new advances for EEG processing with DL, outperforms previous state-of-the-art approaches on intersubject MI classification.
Palabras Clave
Brain computer interface (BCI), deep learning (DL), motor imagery, transfer learning, inter-subject
ISSN
1534-4320
Revisión por pares
SI
Patrocinador
This work was supported in part by the ‘Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación’ and European Regional Development Fund (ERDF) ‘A way of making Europe’ under Grant PID2020-115468RB-I00 and Grant RTC2019- 007350-1; in part by the European Commission and ERDF through the R+D+i Project ‘Análisis y Correlación Entre la Epigenética y la Actividad Cerebral Para Evaluar el Riesgo de Migraña Crónica y Episódica en Mujeres’ (Cooperation Programme Interreg V-A Spain-Portugal POCTEP 2014–2020); and in part by the CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III.
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
Nombre:
Tamaño:
1.291Mb
Formato:
Adobe PDF
Descripción:
Artículo principal
La licencia del ítem se describe como Attribution-NoDerivs 3.0 Unported








