• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • TRABAJOS FIN DE ESTUDIOS
    • Trabajos Fin de Máster UVa
    • Ver ítem
    •   UVaDOC Principal
    • TRABAJOS FIN DE ESTUDIOS
    • Trabajos Fin de Máster UVa
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/57858

    Título
    Análisis probabilístico de una medida de diagonalidad para matrices de covarianzas
    Autor
    Rodríguez Vítores, David
    Director o Tutor
    Matrán Bea, CarlosAutoridad UVA
    Editor
    Universidad de Valladolid. Facultad de Ciencias
    Año del Documento
    2022
    Titulación
    Máster en Matemáticas
    Resumen
    En el trabajo se introduce una nueva medida de aproximación a la diagonalidad de una matriz definida positiva con vistas a su aplicación al problema de componentes principales comunes. La propuesta surge a partir de ideas relacionadas con la métrica de Wasserstein entre distribuciones de probabilidad, vinculadas a estructuras dedependencia, resumidas aquí en la cota de Gelbrich. La medida tiene como objetivo valorar la adecuación de determinadas características las variables observadas para la comparación de distribuciones, y el punto de vista es el de medir la concordancia de las direcciones principales de las matrices de covarianzas asociadas. La medida se define a partir de una desigualdad matricial sobre la traza, mediante una normalización adecuada, y su análisis incluye su adaptación al problema de componentes principales y su comportamiento asintótico a partir de muestras aleatorias. Finalmente, se concluye con diferentes ejemplos a partir de datos reales y simulaciones.
    Palabras Clave
    Distancia de Wasserstein
    Componentes principales comunes
    Análisis multivariante
    Departamento
    Departamento de Estadística e Investigación Operativa
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/57858
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Máster UVa [7002]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    TFM-G1717.pdf
    Tamaño:
    2.777Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10