• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Grupos de Investigación
    • Untitled
    • GCME - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Grupos de Investigación
    • Untitled
    • GCME - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66068

    Título
    Optimized programming algorithms for multilevel RRAM in hardware neural networks
    Autor
    Milo, V.
    Anzalone, F.
    Zambelli, C.
    Pérez, E.
    Mahadevaiah, M.K.
    González Ossorio, ÓscarAutoridad UVA
    Olivo, P.
    Wenger, Christian
    Ielmini, D.
    Congreso
    2021 IEEE International Reliability Physics Symposium (IRPS)
    Año del Documento
    2021
    Editorial
    Institute of Electrical and Electronics Engineers
    Descripción Física
    6
    Descripción
    Producción Científica
    Documento Fuente
    2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2021, p. 1-6
    Résumé
    A key requirement for RRAM in neural network accelerators with a large number of synaptic parameters is the multilevel programming. This is hindered by resistance imprecision due to cycle-to-cycle and device-to-device variations. Here, we compare two multilevel programming algorithms to minimize resistance variations in a 4-kbit array of HfO 2 RRAM. We show that gate-based algorithms have the highest reliability. The optimized scheme is used to implement a neural network with 9-level weights, achieving 91.5% (vs. software 93.27%) in MNIST recognition.
    Palabras Clave
    Resistive-switching random access memory (RRAM)
    Multilevel programming
    Resistance variability
    Weight quantization
    Hardware neural networks
    In-memory computing
    ISBN
    978-1-7281-6893-7
    DOI
    10.1109/IRPS46558.2021.9405119
    Version del Editor
    https://ieeexplore.ieee.org/document/9405119
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/66068
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GCME - Comunicaciones a congresos, conferencias, etc. [12]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Optimized_programming_algorithms_for_multilevel_RRAM_in_hardware_neural_networks.pdf
    Tamaño:
    2.782Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10