Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66068
Título
Optimized programming algorithms for multilevel RRAM in hardware neural networks
Autor
Congreso
2021 IEEE International Reliability Physics Symposium (IRPS)
Año del Documento
2021
Editorial
Institute of Electrical and Electronics Engineers
Descripción Física
6
Descripción
Producción Científica
Documento Fuente
2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2021, p. 1-6
Resumo
A key requirement for RRAM in neural network accelerators with a large number of synaptic parameters is the multilevel programming. This is hindered by resistance imprecision due to cycle-to-cycle and device-to-device variations. Here, we compare two multilevel programming algorithms to minimize resistance variations in a 4-kbit array of HfO 2 RRAM. We show that gate-based algorithms have the highest reliability. The optimized scheme is used to implement a neural network with 9-level weights, achieving 91.5% (vs. software 93.27%) in MNIST recognition.
Palabras Clave
Resistive-switching random access memory (RRAM)
Multilevel programming
Resistance variability
Weight quantization
Hardware neural networks
In-memory computing
ISBN
978-1-7281-6893-7
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
Tamaño:
2.782Mb
Formato:
Adobe PDF