• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Grupos de Investigación
    • Untitled
    • GCME - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Grupos de Investigación
    • Untitled
    • GCME - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66171

    Título
    The asset administration shell as enabler for predictive maintenance: a review
    Autor
    Rodríguez Rahal, Jhonny
    Schwarz, Alexander
    Sahelices Fernández, BenjamínAutoridad UVA Orcid
    Weis, Ronny
    Duque Antón, Simón
    Año del Documento
    2023
    Editorial
    SPRINGER LINK
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Intelligent Manufacturing
    Résumé
    The emergence of the Internet of Things and the interconnection of systems and machines enables the idea of Industry 4.0, a new industrial paradigm with a strong focus on interaction and communication between physical and digital entities, leading to the creation of cyber-physical systems. The digital twin and the standard for the Asset Administration Shell are concepts derived from Industry 4.0 that exploit the advantages of connecting the physical and virtual domains, improving the management and display of the collected data. Furthermore, the increasing availability of data has enabled the implementation of data-driven approaches, such as machine and deep learning models, for predictive maintenance in industrial and automotive applications. This paper provides a two-dimensional review of the Asset Administration Shell and data-driven methods for predictive maintenance, including fault diagnosis and prognostics. Additionally, a digital twin architecture combining the Asset Administration Shell, predictive maintenance and data-driven methods is proposed within the context of the WaVe project.
    Palabras Clave
    Asset administration shell
    Predictive maintenance
    Digital twin
    Machine learning
    Industry 4.0
    WaVe
    ISSN
    0956-5515
    Revisión por pares
    SI
    DOI
    10.1007/s10845-023-02236-8
    Patrocinador
    CRUE-CSIC agreement with Springer Nature
    Version del Editor
    https://link.springer.com/article/10.1007/s10845-023-02236-8#Abs1
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/66171
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GCME - Artículos de revista [57]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    s10845-023-02236-8.pdf
    Tamaño:
    848.9Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Atribución-NoComercial-CompartirIgual 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-NoComercial-CompartirIgual 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10